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Drift macroalgae, often found in clumps or mats adjacent to or within seagrass

beds, can provide additional food resources and habitat complexity, leading to

increased animal abundance, but large concentrations can also inhibit faunal

movements, smother benthic communities, and contribute to hypoxia,

reducing nekton abundance. Despite its ubiquity, few studies have quantified

drift macroalgal prevalence over large spatial scales or its effects on seagrass-

associated nekton, hindering our understanding of the functional role of drift

macroalgae in ecosystems. We quantified the relationship between drift

macroalgal biomass and the seagrass-associated nekton community within

five estuaries spanning 2000 km across the northern Gulf of Mexico. Overall,

increases in macroalgal biomass within seagrass meadows significantly

influenced community structure, increasing shrimp, crab, and fish

abundances, but the effect varied by region. Relationships between species

richness, diversity, organism size, and macroalgal biomass were not observed,

suggesting that drift macroalgae provide additional habitat but not necessarily

new niche space. Small nekton play a vital role in many local fisheries, providing

valuable food resources for fish and invertebrates. Increased recruitment into

macroalgae can benefit local fisheries by providing shelter and increased food

resources, which may increase the survival, growth, and population size of

recreationally and economically important species. While excess levels of drift

macroalgae can negatively impact benthic plant and animal communities,

particularly in eutrophic areas, the moderate levels observed during this

survey were associated with positive effects on organismal abundance,

suggesting that drift algal dynamics should be considered in habitat-based

management strategies for coastal estuaries.
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Introduction

Despite comprising less than 10% of the ocean area,

shallow coastal habitats, such as seagrass meadows, salt

marshes, mangroves, and oyster reefs, provide extensive

benefits that are both ecologically and economically

important. Seagrass habitats alone contribute over

$19,000 ha−1 yr−1 to local economies (Costanza et al., 1997;

Fourqurean et al., 2012; Tuya et al., 2014). When found

within seagrass habitats, drift macroalgae can further

increase phytobiomass aboveground by 3- to 100-fold

(Morris and Hall, 2001), adding to habitat complexity that

can support increased animal diversity (Kingsford, 1995).

Drift macroalgae often originate as attached algae on seagrass

leaves and other hard substrata before becoming uprooted by

various physical disturbances (e.g., currents and waves)

(Norton and Mathieson, 1983; Bell and Hall, 1997; Biber,

2002; Lirman et al., 2003). They are classified into three major

groups: brown algae (Phaeophyceae), green algae

(Chlorophyta), and red algae (Rhodophyta; Norton and

Mathieson, 1983; Bell and Hall, 1997; Biber, 2002; Lirman

et al., 2003), with rhodophytes being the dominant taxa in the

northern Gulf of Mexico (Virnstein and Carbonara, 1985;

Bell and Hall, 1997; Holmquist, 1997). Seagrass and

associated macroalgae create productive ecosystems

relative to neighboring unvegetated substrates, providing

valuable nursery habitats (e.g., Carr, 1994; Jackson et al.,

2001; Heck et al., 2003), enhancing local fisheries, increasing

food resources and fish growth rates, and decreasing

predation and competition (e.g., Orth et al., 1984; Fraser

and Gilliam, 1987; Rooker et al., 1998; Nagelkerken et al.,

2002; Jackson et al., 2015).

Drift macroalgae often increase the structural complexity of

seagrass habitats (Morris and Hall, 2001) and provide additional

refuge, leading to increases in infauna (Hull, 1987), epifauna

(Isaksson and Pihl, 1992), and macrofauna, including small

crustaceans and mollusks (Norkko et al., 2000; Raffaelli, 2000;

Salovius et al., 2005), juvenile blue crabs (Wilson et al., 1990), and

small shrimp and fish (Holmquist, 1994; Holmquist, 1997;

Kingsford, 1995; Correia, 2021). Relationships between habitat

complexity and nekton abundance and species richness have

been the focus of many studies, with more complex habitats

increasing niche space and leading to increases in the abundance

and diversity of animals found there (e.g., Kingsford, 1995; Rozas

and Minello, 1998; Minello, 1999). While macroalgae can

enhance seagrass ecosystem services, at sufficiently high

biomass, they can also lead to hypoxic conditions with

resulting declines in animal abundance and species diversity

(Hull, 1987; Bonsdorff, 1992; Raffaelli et al., 1998; Cummins

et al., 2004; Zajac and McCarthy, 2015). Whether drift

macroalgae have positive or negative impacts on the

animal community is largely driven by the quantity and

type of algae present, with lower drift algal biomass

oftentimes leading to higher nekton abundance and species

richness (e.g., Everett, 1994; Holmquist, 1997; Norkko et al.,

2000; Arroyo et al., 2006) and high biomass leading to a

decline in species richness (e.g., Bonsdorff, 1992; Raffaelli

et al., 1998). However, understanding the threshold where

the net impact of drift algal biomass transitions from

positive to negative and the overall role that drift algae play

in structuring animal communities remains an ongoing

challenge.

Over the past few decades, seagrass cover has declined in

the northern Gulf of Mexico, while drift algal abundance has

remained constant or increased (Benz et al., 1979; Virnstein

and Carbonara, 1985; Zieman et al., 1989; Biber and Irlandi,

2006; Kopecky and Dunton, 2006; Fredericq et al., 2009;

Correia, 2021). With future climate projections indicating

an increase in macroalgae in accordance with higher sea

surface temperatures and ocean acidification (Brodie et al.,

2014), contemporary studies are needed to assess both the

presence and effects of drift macroalgae on seagrass-

associated nekton communities. The purpose of this study

was to investigate the relationships between drift macroalgal

biomass and small nekton communities on a Gulf-wide

scale. Previous comparisons across the northern Gulf of

Mexico revealed significant differences in algal biomass

across the region and sampling period (Correia et al., in

press). Because macroalgae were often more abundant

during the early summer months, this study primarily

focused on data collected during May–June 2018. To

determine how drift algal biomass influences nekton

community structure, we performed a survey of drift

macroalgae across five estuaries spanning 2000 km of the

coastline in the northern Gulf of Mexico, measuring

macroalgal biomass as well as the nekton community

found within the seagrass-macroalgal mosaic. Specifically,

we quantified (1) the relationship between algal biomass and

nekton community composition (e.g., abundance, diversity,

and taxon-specific variations) and (2) regional variation in

these relationships across the northern Gulf of Mexico.

An epibenthic sled was used during data collection to

sample the smaller epibenthic nekton and invertebrates

living within the algal-seagrass matrix, which are more

likely to be influenced by variations in algal biomass.

Because the seagrass percent cover and structure varied

across each region, which could affect our interpretation

of algal impacts on fauna, a subset of the data was also

analyzed to compare nekton community changes across a

range of algal weights when the areal coverage of the

dominant seagrass turtle grass (Thalassia testudinum)

exceeded 75% and canopy heights were between 200 and

400 mm (Correia, 2021). Based on previous findings, we

hypothesized that algal biomass would influence the

community composition of fauna, increasing the abundance

and richness at intermediate algal biomasses.
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Materials and methods

Study regions

Five estuaries in the northern Gulf of Mexico, each

containing at least 20 sites within seagrass meadows, were

surveyed during early (May–June) and late

(August–September) summer of 2018 (Supplementary Figure

S1). The estuaries sampled included Laguna Madre, TX (LM;

n = 20; 26°08′N, 97°14′W), Corpus Christi Bay, TX (CB; n = 20;

27°51′N, 97°08′W), the Chandeleur Islands, LA (LA; n = 20;

29°54′N, 88°50′W), Cedar Key, FL (CK; n = 25; 29°05′N,
83°01′W), and Charlotte Harbor (CH; n = 25; 26°04′N,
82°14′W). These estuaries encompass two semi-enclosed bays

with major freshwater inputs (CB and CH), two sites along the

open coastline (CK and LA), and one semi-enclosed lagoon with

no major freshwater inputs (LM). Sites were selected by

overlaying a tessellated hexagonal grid (500 m edge length) on

each estuary in ArcGIS (Moore, 2009; Neckles et al., 2012;Wilson

and Dunton, 2012). One station was randomly generated within

each of the 20–25 grid cells that contained more than 50%

seagrass coverage, with a minimum of 500 m distance

between sites (Belgrad et al., 2021). Across all regions, turtle

grass (T. testudinum) was the dominant macrophyte taxa;

however, manatee grass (Syringodium filiforme) and shoal

grass (Halodule wrightii) were also common. At each

sampling site, abiotic conditions (i.e., temperature, salinity,

dissolved oxygen, and depth) were recorded, drift macroalgal

biomass was measured, and seagrass cover/abundance and

morphometrics [i.e., percent cover (0–100%), shoot height

(mm), and shoot density] were assessed. Because we sampled

synoptically using the same methods, we were able to evaluate

algal biomass and distribution within and among locations across

the northern Gulf of Mexico (Supplementary Table S1; Belgrad

et al., 2021; Correia, 2021).

Drift algal biomass and nekton community
assessment

Within each hexagon, drift algal biomass and nekton

abundance within seagrass meadows were measured using

an epibenthic sled, consisting of an aluminum frame

(0.75 m wide and 0.6 m high) with two skids on either

side (0.7 m in length), and a 2 mm stretch mesh net. The

sled captured smaller epibenthic fish and invertebrates

living within the algal-seagrass matrix. The sled was

towed for 13.3 m at approximately 0.3 m sec−1, covering

an area of approximately 10 m2. Macroalgae from benthic

sled samples were bagged, frozen, and transported to the lab

where they were later identified and weighed. Nekton

within the sled were identified to the lowest possible

classification and counted, and their lengths (i.e., total

length for shrimp and fish; carapace width for crabs)

were recorded.

Seagrass and algal vegetative sampling
(quadrats)

Seagrass structural complexity was assessed using a 1 m2

quadrat divided into 100, 10 cm × 10 cm cells. Four quadrats were

haphazardly thrown at each sampling location, and the percent

cover, shoot count, and canopy height of each seagrass species

present in a quadrat were recorded. The seagrass percent cover by

species and the cover of drift algae were measured by counting

the number of grid cells within each quadrat that contained a

particular vegetation type (0–100 grids quadrat−1). Shoot count

was calculated for each seagrass species by counting the number

of shoots within a random quadrat grid cell. Canopy height was

defined as the mean of three randomly selected shoot height

measurements.

Statistical analysis

SAS© and Primer™ 7 were used for all statistical analyses. A

combination of univariate and multivariate analyses was

performed to assess nekton abundance, biodiversity, animal

size, and community structure in relation to drift algal

biomass. Variables were tested in SAS© for normality, and

abundance was log-transformed to mitigate skewness and to

achieve normality. Generalized linear mixed models (GLMMs)

were used in SAS© to compare nekton abundance (N), species

richness (S), and diversity (H’) across the region (CB, CH, CK,

LA, and LM), to algal weight [g wet weight (ww); Horton and

Lipsitz, 2012; Sokal and Rohlf, 2013]. The weights of algae

collected in the epibenthic sled were then ranked, and

multivariate analysis was performed in Primer to compare

community differences across these weight classes (0–4), with

0 indicating no algae present (n = 70), 1 indicating 1–300 g ww of

algae (n = 77, mean = 115 ± 83 SD), 2 indicating 301–500 g ww

(n = 25, mean = 115 ± 83), 3 indicating 501–1,000 g ww (n = 23,

mean = 755 ± 172), and 4 indicating over 1,000 g ww (n = 25,

mean = 2,560 ± 1,630). The ranking system was necessary for

Primer analysis because this software cannot analyze continuous

data as a treatment. Species abundance was square-root-

transformed to manage skewness and analyzed using a one-

way PERMANOVA design with algal weight class (0–4) as the

fixed factor. A canonical analysis of principal coordinates (CAP)

plot was also performed to illustrate a pattern of difference across

algal weight classes.

To account for the positive relationship between drift

macroalgal biomass and increased seagrass percent cover

(Correia, 2021; Correia et al., in press), a subset of the data

was also analyzed to compare the effects of drift algal biomass to
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nekton community composition while holding seagrass constant

(the turtle grass percent cover was greater than 75%, and the

canopy heights were between 200 and 400 mm), encompassing

31.8% of the original data set. When analyzing the subset,

community or diversity metrics were no longer significant

among sampling periods (i.e., early vs. late summer, p > 0.05),

and we used samples collected in both early and late summer for

this analysis. Generalized linear mixed models (GLMMs) were

again performed in SAS© on the data subset to compare nekton

abundance (N), species richness (S), and diversity (H’) across the

region (CB, CH, CK, LA, and LM) and algal weight (g ww;

Horton and Lipsitz, 2012; Sokal and Rohlf, 2013).

In Primer, similarity percentage (SIMPER) analysis identified

which species contributed over 70% of the difference across algal

weight classes; individual species (or groups of species based

upon classification similarities) were compiled and reanalyzed to

test for taxon-specific abundance and size differences across the

algal weight. During taxon-specific analysis, seagrass variables

were held constant and only samples containing greater than 75%

turtle grass coverage and canopy heights of 200–400 mm were

included. Analysis of taxon-specific abundance was also

compared using GLMMs across the region (CB, CH, CK, LA,

and LM) and algal weight (g ww) to identify taxon-specific

changes across constant seagrass coverage and canopy height.

Results

Overall, the mean animal abundance was significantly

different across algal weight (p < 0.001) and was higher when

the algal biomass was greater than 500 g (Figure 1A; Table 1).

While algal biomass led to increased nekton species abundance,

no clear pattern was found with nekton species richness or

diversity (p = 0.92; Table 1). Nekton species richness

remained relatively stable across algal weight classes, with

49 unique species identified when no algae were present (n =

19), 53 species in 1–300 g ww (n = 37), 52 species in 301–500 g

ww (n = 19), 42 species in 501–1,000 g ww (n = 19), and

56 species in areas with over 1,000 g ww of algae (n = 15).

Shannon diversity also did not differ significantly across algal

weight and only varied by region (p = 0.03; Table 1). When

analyzing a subset of the data in turtle grass with a similar

coverage and canopy height, similar patterns were observed for

animal abundance, with significantly higher animal abundances

seen at algal biomasses over 500 g ww, compared to those when

no algae were present (Figure 1B; Table 1). Diversity was not

significantly different across region (p = 0.14) or algal weight (p =

0.71; Table 1) in the data subset, and the richness again remained

stable across all algal weight classes (Correia, 2021).

Macroalgal biomass significantly influenced overall

community structure (Figure 2A; Pseudo-F = 3.124; p =

0.001). Pairwise comparisons across the different algal weight

classes indicated that small benthic communities were

significantly different when algae were present. When

comparing algal weight classes to one another, all areas

containing algae were significantly different from areas with

no algae (Supplementary Table S2). Areas containing smaller

concentrations of algae (i.e., Class 1–3) were also significantly

different from areas containing over 1,000 g of algae (Class 4;

Supplementary Table S2). When analyzing these relationships

using a subset of the data to control for seagrass cover and canopy

height, macroalgal biomass still significantly influenced

community structure (Figure 2B; Pseudo-F = 2.24; p = 0.002).

Pairwise comparisons across algal weight class indicated that all

areas containing algae were significantly different from areas with

no algae (Supplementary Table S2). When comparing algal

weight classes to one another, areas containing 300–500 g

(Class 2) of macroalgae were significantly different from areas

containing over 500 g (Classes 3 and 4). Macroalgal

concentrations below 300 g showed the most variability in the

nekton community and were not significantly different from the

other macroalgal classes (Supplementary Table S2).

FIGURE 1
Average (+SE) small nekton abundance across drift
macroalgae weight classes in the early summer benthic sled
samples. Abundance measurements were collected from the
epibenthic sled pull, which covered a 10 m2 area. The asterisk
(*) indicates that there is a significant difference in the algae weight
class compared to that when no algae were present. The full data
set (A) and subset in which seagrass was held constant (B) showed
a similar pattern of increased abundance at algal concentrations
greater than 500 g. In this data set, “0” indicates that no algae were
present in the sled sample [n = 19, 22 (full, subset, respectively)], “1”
indicates 1–300 g of algae (n = 37, 30), “2” represents 301–500 g
of algae (n= 19, 15), “3” represents 501–1,000 g of algae (n= 19, 9),
and “4” represents samples containing over 1,001 g of algae (n =
15, 8).
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Taxon-specific responses to macroalgae

The largest sources of dissimilarity between communities

across the different algal classes, as identified by SIMPER

analysis, were nonpenaeid shrimp (Hippolytidae,

Palaemonidae, Processidae), penaeid shrimp (Penaeidae),

gobies (Gobiidae), pipefish (Syngnathidae), and pinfish

(Lagodon rhomboides), which collectively made up over 70%

of the dissimilarity. Hippolytidae (hippolytid shrimp) were the

most abundant organisms collected, with over 1,000 individuals

present in some samples. Because of this, Hippolytidae was

analyzed separately from other nonpenaeid shrimp. All other

nonpenaeid shrimp (Palaemonidae, Palaemonetes sp.,

Periclimenes sp., Processa sp., Periclimenes americanus,

Periclimenes longicaudatus, Palaemon floridanus, Palaemonetes

pugio, Palaemonetes vulgaris, Tozeuma carolinense, Thor sp., and

Thor dobkini) were grouped together. Penaeid shrimp included

Penaeidae, Farfantepenaeus sp., Rimapenaeus sp.,

Farfantepenaeus duorarum, Farfantepenaeus aztecus, and

Litopenaeus setiferus. Gobies included Gobiidae, Gobiosoma

sp., Microgobius sp., Bathygobius sp., Ctenogobius sp.,

Gobionellus sp., Gobiosoma robustum, Ctenogobius boleosoma,

Microgobius gulosus, Microgobius thalassinus, Gobiosoma bosc,

Evothodus lyricus, and Bathygobius soporator. Pipefish included

Syngnathidae, Syngnathus sp., Syngnathus floridae, Syngnathus

louisiana, Syngnathus scovelli, and Anarchopterus criniger.

There was a significant interaction between region and

weight class for Hippolytidae shrimp abundance at α = 0.1

(p = 0.09; Table 2). Other nonpenaeid shrimp abundances

were also significantly different across region (p < 0.001) and

algal weight class (p = 0.03; Table 2). The abundances of penaeid

shrimp and gobies, however, only differed across region and were

not related to algal biomass (Table 2). An overall positive trend in

Hippolytidae shrimp was observed in Texas and Florida regions

with increasing algal biomass, with a slight negative trend in the

Chandeleur Islands, LA. At the highest algal biomass, a slight

decline in Hippolytidae abundance was also observed in Laguna

Madre, TX, Corpus Christi Bay, TX, and Charlotte Harbor, FL

(Supplementary Figure S2). Other nonpenaeid shrimp followed a

similar pattern, with an increase in shrimp abundance at all

locations except Cedar Key, FL (Supplementary Figure S4).

The degree of shrimp increase was regionally dependent

(Supplementary Figure S4, S5). While organismal

abundance increased, the overall length of shrimp and

fish did not change with algal weight (p > 0.05;

Supplementary Table S3, S4), indicating that the same

organismal size classes were accessing structured habitats

at all drift algal biomasses.

TABLE 1 Animal diversity across region and algae weight. GLMMs were performed in SAS© to compare nekton abundance (N) and diversity (H’) across
region (CB, CH, CK, LA, and LM) and algae weight [g wet weight (ww)]. General linear regression models for species abundance across region and
algae weight during the summer 2018 sampling season, when seagrass was held constant, was also performed.

Full data set

Diversity variable SS df F ratio Prob > F

GLMM results across all regions and species abundance (N)

Region (CB, LM, LA, CK, and CH) 6.19 4 1.40 0.2391

Algae weight (g ww) 21.28 1 19.27 <0.0001
Region*algae weight 4.40 4 1.00 0.4136

Shannon Diversity (H′)
Region (CB, LM, LA, CK, and CH) 1.43 4 2.89 0.0259

Algae weight (g ww) 0.001 1 0.01 0.9161

Region*algae weight 0.14 4 0.28 0.8921

Subset of data SS df F ratio Prob > F

Species abundance (N)

Region (CB, LM, LA, CK, and CH) 25.86 4 6.12 0.0003

Algae weight (g ww) 6.05 1 5.73 0.0192

Region*algae weight 5.31 4 1.26 0.2946

Shannon Diversity (H′)
Region (CB, LM, LA, CK, and CH) 0.84 4 1.80 0.1374

Algae weight (g ww) 0.02 1 0.14 0.7140

Region*algae weight 0.26 4 0.55 0.6964
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Discussion

Across the northern Gulf of Mexico, the abundance of small

epibenthic nekton were positively related to drift algal biomass,

but the strength of the effect varied regionally. When the seagrass

cover and canopy height were held constant, the same patterns

were observed, strengthening our conclusion that changes in

macroalgal biomass were the primary driver of organismal

patterns. Diversity and species-specific size, however, did not

change with macroalgal biomass, indicating an additive role

within the seagrass landscape rather than a distinct habitat

type, at least for the nekton sampled. Red and brown drift

algae, which are common in the Gulf of Mexico and

accounted for most of the drift algae in this study, are known

to increase faunal abundances (Virnstein and Carbonara, 1985;

Bell and Hall, 1997; Holmquist, 1997; Correia, 2021), and thus,

our results are consistent with previous findings. In some

instances, however, drift algae can smother seagrass beds,

cause hypoxia, and ultimately reduce faunal abundance and

diversity (Hull, 1987; Isaksson and Pihl, 1992; Norkko and

Bonsdorff, 1996a; Norkko and Bonsdorff, 1996b; Raffaelli,

2000). This is commonly seen when nutrient enrichment

leads to drastic increases in drift macroalgal biomass,

reducing local dissolved oxygen and light concentrations.

This effect appears to be dependent on algal biomass and

may be species-specific (Hull, 1987; Raffaelli, 2000; Young,

2009). A slight decline in nonpenaeid shrimp was observed

at the highest algal biomasses (exceeding 2,000 g ww) in Corpus

Christi Bay, TX, Laguna Madre, TX, and Charlotte Harbor, FL,

which could be an indicator of algal-mediated habitat

degradation (Supplementary Figure S2). Our data are limited

at the higher end of algal biomass, although making it difficult

to identify a threshold at which algae might begin to have

negative effects. Future studies should quantify abundance

changes across a larger range of algal biomass to pinpoint

such thresholds. With few exceptions, in this study, drift

algae were associated with higher animal abundance, driven

largely by shrimp species. We believe that this represents an

effect of added three-dimensional structure within the seagrass-

macroalgal mosaic, allowing more individuals to occupy a given

area of seagrass.

Shallow vegetated habitats are commonly associated with

increased abundance and diversity of organisms compared to

adjacent bare substrates, leading to inferences that structure,

regardless of type, is important when determining species

occupancy per given area (Heck et al., 2003; Minello et al., 2003;

Humphries et al., 2011). Previously, a positive relationship between

increased turtle grass percent cover and drift macroalgae percent

cover was found (Correia, 2021; Correia et al., in press), which could

be influencing the results of this study, due to the overall increase in

habitat complexity. However, by analyzing a subset of the data over a

narrow range of turtle grass percent cover and canopy heights and

coming to similar conclusions, it seems unlikely that seagrass

percent cover alone explains the patterns noted between algal

biomass and nekton abundance. The added complexity provided

by drift macroalgae likely leads to positive changes in nekton

abundance by the same mechanism. However, quantification of

algal influences on flow, temperature, dissolved oxygen, and

recruitment of small nekton organisms would provide additional

information regarding the nature of the habitat provided by drift

algae relative to seagrass alone.

FIGURE 2
CAP plot of community structure across algae weight class.
CAP plot comparing communities during the early summer across
averaged algae weight classes. Comparisons were run using the
complete data set (A) and a subset of the data, in which the
turtle grass percent cover was >75% cover and the average canopy
height was between 200 and 400 mm (B). Classifications included
microbenthic sled samples where no algae were present (0), along
with areas containing up to 300 g (1), 301–500 g (2), 501–1,000 g
(3), and over 1,000 g (4) of macroalgae.
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Macroalgal blooms are more variable than other complex

habitats found along the coast (e.g., seagrass meadow, coral reef,

and mangrove forest) and are largely dependent on local flow,

season, and water quality. Generally, red and brown macroalgae

in the Gulf of Mexico are found at peak abundance during the

summer (Pihl et al., 1996). Although algae can grow rapidly,

storms and currents can displace them quickly (Pihl et al., 1999).

Not surprisingly, the ephemeral nature of macroalgal

communities makes this a good habitat for smaller, motile,

and more opportunistic organisms that can successfully find

and use the habitat type when available (Norkko et al., 2000;

Camp et al., 2014).

Variation in the positive association between algal biomass

and nekton abundance could be related to differences in algal

species composition across each region or differences in life

history characteristics of both penaeid and nonpenaeid shrimp

found in these areas. Changes in macroalgae species composition

significantly influenced local animal abundances, with some algal

species containing higher abundances than others (Correia,

2021). Spyridia, for example, contained approximately 757 ±

335 individuals when listed as the primary algal taxon in

Charlotte Harbor, FL, with 23 unique species identified.

Conversely, locations primarily containing Hypnea had 57 ±

39.5 individuals and nine unique species present (Correia, 2021).

However, regardless of region and macroalgal composition,

which likely contributed to the variation in our study, higher

algal abundances were associated with increased nekton

abundances.

Across the northern Gulf of Mexico, the presence of drift

macroalgae may have a large, positive effect on smaller nekton

organisms, such as shrimp and gobies, with the timing of peak

algal abundance often coinciding with the peak in the

recruitment of juvenile nekton (Turner and Brody, 1983;

Rogers et al., 1993). This increase in recruitment can be

beneficial to local fisheries by providing additional food

resources, increasing the survival, growth rates, and

development of important prey and forage species. It is

important, however, to continue to monitor changes in drift

macroalgae biomass since they often indicate eutrophication and

can quickly transition to nuisance species with well-documented

negative effects on the seagrass ecosystems in which they are

found.
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